Copied to
clipboard

G = C5×C22⋊Q16order 320 = 26·5

Direct product of C5 and C22⋊Q16

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C5×C22⋊Q16, (C2×C10)⋊7Q16, Q8.6(C5×D4), (C2×Q16)⋊1C10, C4.25(D4×C10), (C5×Q8).40D4, C2.4(C10×Q16), C222(C5×Q16), Q8⋊C45C10, (C10×Q16)⋊15C2, (C2×C20).320D4, C20.386(C2×D4), C22⋊C8.3C10, C10.51(C2×Q16), C23.44(C5×D4), C22⋊Q8.2C10, C10.98C22≀C2, C22.81(D4×C10), (C22×Q8).6C10, (C2×C40).254C22, (C2×C20).916C23, (C22×C10).166D4, (Q8×C10).260C22, C10.132(C8.C22), (C22×C20).423C22, C4⋊C4.3(C2×C10), (C2×C8).2(C2×C10), (C2×C4).29(C5×D4), (Q8×C2×C10).16C2, C2.7(C5×C8.C22), (C5×Q8⋊C4)⋊28C2, C2.12(C5×C22≀C2), (C2×C10).637(C2×D4), (C5×C22⋊C8).12C2, (C2×Q8).45(C2×C10), (C5×C22⋊Q8).12C2, (C5×C4⋊C4).225C22, (C22×C4).41(C2×C10), (C2×C4).91(C22×C10), SmallGroup(320,952)

Series: Derived Chief Lower central Upper central

C1C2×C4 — C5×C22⋊Q16
C1C2C22C2×C4C2×C20Q8×C10C10×Q16 — C5×C22⋊Q16
C1C2C2×C4 — C5×C22⋊Q16
C1C2×C10C22×C20 — C5×C22⋊Q16

Generators and relations for C5×C22⋊Q16
 G = < a,b,c,d,e | a5=b2=c2=d8=1, e2=d4, ab=ba, ac=ca, ad=da, ae=ea, dbd-1=bc=cb, be=eb, cd=dc, ce=ec, ede-1=d-1 >

Subgroups: 242 in 148 conjugacy classes, 62 normal (30 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, Q8, Q8, C23, C10, C10, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, Q16, C22×C4, C22×C4, C2×Q8, C2×Q8, C2×Q8, C20, C20, C2×C10, C2×C10, C2×C10, C22⋊C8, Q8⋊C4, C22⋊Q8, C2×Q16, C22×Q8, C40, C2×C20, C2×C20, C5×Q8, C5×Q8, C22×C10, C22⋊Q16, C5×C22⋊C4, C5×C4⋊C4, C5×C4⋊C4, C2×C40, C5×Q16, C22×C20, C22×C20, Q8×C10, Q8×C10, Q8×C10, C5×C22⋊C8, C5×Q8⋊C4, C5×C22⋊Q8, C10×Q16, Q8×C2×C10, C5×C22⋊Q16
Quotients: C1, C2, C22, C5, D4, C23, C10, Q16, C2×D4, C2×C10, C22≀C2, C2×Q16, C8.C22, C5×D4, C22×C10, C22⋊Q16, C5×Q16, D4×C10, C5×C22≀C2, C10×Q16, C5×C8.C22, C5×C22⋊Q16

Smallest permutation representation of C5×C22⋊Q16
On 160 points
Generators in S160
(1 44 81 54 95)(2 45 82 55 96)(3 46 83 56 89)(4 47 84 49 90)(5 48 85 50 91)(6 41 86 51 92)(7 42 87 52 93)(8 43 88 53 94)(9 113 137 17 129)(10 114 138 18 130)(11 115 139 19 131)(12 116 140 20 132)(13 117 141 21 133)(14 118 142 22 134)(15 119 143 23 135)(16 120 144 24 136)(25 126 153 33 145)(26 127 154 34 146)(27 128 155 35 147)(28 121 156 36 148)(29 122 157 37 149)(30 123 158 38 150)(31 124 159 39 151)(32 125 160 40 152)(57 78 111 70 103)(58 79 112 71 104)(59 80 105 72 97)(60 73 106 65 98)(61 74 107 66 99)(62 75 108 67 100)(63 76 109 68 101)(64 77 110 69 102)
(2 28)(4 30)(6 32)(8 26)(10 67)(12 69)(14 71)(16 65)(18 75)(20 77)(22 79)(24 73)(34 53)(36 55)(38 49)(40 51)(41 125)(43 127)(45 121)(47 123)(58 142)(60 144)(62 138)(64 140)(82 156)(84 158)(86 160)(88 154)(90 150)(92 152)(94 146)(96 148)(98 120)(100 114)(102 116)(104 118)(106 136)(108 130)(110 132)(112 134)
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 25)(8 26)(9 66)(10 67)(11 68)(12 69)(13 70)(14 71)(15 72)(16 65)(17 74)(18 75)(19 76)(20 77)(21 78)(22 79)(23 80)(24 73)(33 52)(34 53)(35 54)(36 55)(37 56)(38 49)(39 50)(40 51)(41 125)(42 126)(43 127)(44 128)(45 121)(46 122)(47 123)(48 124)(57 141)(58 142)(59 143)(60 144)(61 137)(62 138)(63 139)(64 140)(81 155)(82 156)(83 157)(84 158)(85 159)(86 160)(87 153)(88 154)(89 149)(90 150)(91 151)(92 152)(93 145)(94 146)(95 147)(96 148)(97 119)(98 120)(99 113)(100 114)(101 115)(102 116)(103 117)(104 118)(105 135)(106 136)(107 129)(108 130)(109 131)(110 132)(111 133)(112 134)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)
(1 97 5 101)(2 104 6 100)(3 103 7 99)(4 102 8 98)(9 149 13 145)(10 148 14 152)(11 147 15 151)(12 146 16 150)(17 157 21 153)(18 156 22 160)(19 155 23 159)(20 154 24 158)(25 113 29 117)(26 120 30 116)(27 119 31 115)(28 118 32 114)(33 129 37 133)(34 136 38 132)(35 135 39 131)(36 134 40 130)(41 62 45 58)(42 61 46 57)(43 60 47 64)(44 59 48 63)(49 110 53 106)(50 109 54 105)(51 108 55 112)(52 107 56 111)(65 90 69 94)(66 89 70 93)(67 96 71 92)(68 95 72 91)(73 84 77 88)(74 83 78 87)(75 82 79 86)(76 81 80 85)(121 142 125 138)(122 141 126 137)(123 140 127 144)(124 139 128 143)

G:=sub<Sym(160)| (1,44,81,54,95)(2,45,82,55,96)(3,46,83,56,89)(4,47,84,49,90)(5,48,85,50,91)(6,41,86,51,92)(7,42,87,52,93)(8,43,88,53,94)(9,113,137,17,129)(10,114,138,18,130)(11,115,139,19,131)(12,116,140,20,132)(13,117,141,21,133)(14,118,142,22,134)(15,119,143,23,135)(16,120,144,24,136)(25,126,153,33,145)(26,127,154,34,146)(27,128,155,35,147)(28,121,156,36,148)(29,122,157,37,149)(30,123,158,38,150)(31,124,159,39,151)(32,125,160,40,152)(57,78,111,70,103)(58,79,112,71,104)(59,80,105,72,97)(60,73,106,65,98)(61,74,107,66,99)(62,75,108,67,100)(63,76,109,68,101)(64,77,110,69,102), (2,28)(4,30)(6,32)(8,26)(10,67)(12,69)(14,71)(16,65)(18,75)(20,77)(22,79)(24,73)(34,53)(36,55)(38,49)(40,51)(41,125)(43,127)(45,121)(47,123)(58,142)(60,144)(62,138)(64,140)(82,156)(84,158)(86,160)(88,154)(90,150)(92,152)(94,146)(96,148)(98,120)(100,114)(102,116)(104,118)(106,136)(108,130)(110,132)(112,134), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,25)(8,26)(9,66)(10,67)(11,68)(12,69)(13,70)(14,71)(15,72)(16,65)(17,74)(18,75)(19,76)(20,77)(21,78)(22,79)(23,80)(24,73)(33,52)(34,53)(35,54)(36,55)(37,56)(38,49)(39,50)(40,51)(41,125)(42,126)(43,127)(44,128)(45,121)(46,122)(47,123)(48,124)(57,141)(58,142)(59,143)(60,144)(61,137)(62,138)(63,139)(64,140)(81,155)(82,156)(83,157)(84,158)(85,159)(86,160)(87,153)(88,154)(89,149)(90,150)(91,151)(92,152)(93,145)(94,146)(95,147)(96,148)(97,119)(98,120)(99,113)(100,114)(101,115)(102,116)(103,117)(104,118)(105,135)(106,136)(107,129)(108,130)(109,131)(110,132)(111,133)(112,134), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,97,5,101)(2,104,6,100)(3,103,7,99)(4,102,8,98)(9,149,13,145)(10,148,14,152)(11,147,15,151)(12,146,16,150)(17,157,21,153)(18,156,22,160)(19,155,23,159)(20,154,24,158)(25,113,29,117)(26,120,30,116)(27,119,31,115)(28,118,32,114)(33,129,37,133)(34,136,38,132)(35,135,39,131)(36,134,40,130)(41,62,45,58)(42,61,46,57)(43,60,47,64)(44,59,48,63)(49,110,53,106)(50,109,54,105)(51,108,55,112)(52,107,56,111)(65,90,69,94)(66,89,70,93)(67,96,71,92)(68,95,72,91)(73,84,77,88)(74,83,78,87)(75,82,79,86)(76,81,80,85)(121,142,125,138)(122,141,126,137)(123,140,127,144)(124,139,128,143)>;

G:=Group( (1,44,81,54,95)(2,45,82,55,96)(3,46,83,56,89)(4,47,84,49,90)(5,48,85,50,91)(6,41,86,51,92)(7,42,87,52,93)(8,43,88,53,94)(9,113,137,17,129)(10,114,138,18,130)(11,115,139,19,131)(12,116,140,20,132)(13,117,141,21,133)(14,118,142,22,134)(15,119,143,23,135)(16,120,144,24,136)(25,126,153,33,145)(26,127,154,34,146)(27,128,155,35,147)(28,121,156,36,148)(29,122,157,37,149)(30,123,158,38,150)(31,124,159,39,151)(32,125,160,40,152)(57,78,111,70,103)(58,79,112,71,104)(59,80,105,72,97)(60,73,106,65,98)(61,74,107,66,99)(62,75,108,67,100)(63,76,109,68,101)(64,77,110,69,102), (2,28)(4,30)(6,32)(8,26)(10,67)(12,69)(14,71)(16,65)(18,75)(20,77)(22,79)(24,73)(34,53)(36,55)(38,49)(40,51)(41,125)(43,127)(45,121)(47,123)(58,142)(60,144)(62,138)(64,140)(82,156)(84,158)(86,160)(88,154)(90,150)(92,152)(94,146)(96,148)(98,120)(100,114)(102,116)(104,118)(106,136)(108,130)(110,132)(112,134), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,25)(8,26)(9,66)(10,67)(11,68)(12,69)(13,70)(14,71)(15,72)(16,65)(17,74)(18,75)(19,76)(20,77)(21,78)(22,79)(23,80)(24,73)(33,52)(34,53)(35,54)(36,55)(37,56)(38,49)(39,50)(40,51)(41,125)(42,126)(43,127)(44,128)(45,121)(46,122)(47,123)(48,124)(57,141)(58,142)(59,143)(60,144)(61,137)(62,138)(63,139)(64,140)(81,155)(82,156)(83,157)(84,158)(85,159)(86,160)(87,153)(88,154)(89,149)(90,150)(91,151)(92,152)(93,145)(94,146)(95,147)(96,148)(97,119)(98,120)(99,113)(100,114)(101,115)(102,116)(103,117)(104,118)(105,135)(106,136)(107,129)(108,130)(109,131)(110,132)(111,133)(112,134), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,97,5,101)(2,104,6,100)(3,103,7,99)(4,102,8,98)(9,149,13,145)(10,148,14,152)(11,147,15,151)(12,146,16,150)(17,157,21,153)(18,156,22,160)(19,155,23,159)(20,154,24,158)(25,113,29,117)(26,120,30,116)(27,119,31,115)(28,118,32,114)(33,129,37,133)(34,136,38,132)(35,135,39,131)(36,134,40,130)(41,62,45,58)(42,61,46,57)(43,60,47,64)(44,59,48,63)(49,110,53,106)(50,109,54,105)(51,108,55,112)(52,107,56,111)(65,90,69,94)(66,89,70,93)(67,96,71,92)(68,95,72,91)(73,84,77,88)(74,83,78,87)(75,82,79,86)(76,81,80,85)(121,142,125,138)(122,141,126,137)(123,140,127,144)(124,139,128,143) );

G=PermutationGroup([[(1,44,81,54,95),(2,45,82,55,96),(3,46,83,56,89),(4,47,84,49,90),(5,48,85,50,91),(6,41,86,51,92),(7,42,87,52,93),(8,43,88,53,94),(9,113,137,17,129),(10,114,138,18,130),(11,115,139,19,131),(12,116,140,20,132),(13,117,141,21,133),(14,118,142,22,134),(15,119,143,23,135),(16,120,144,24,136),(25,126,153,33,145),(26,127,154,34,146),(27,128,155,35,147),(28,121,156,36,148),(29,122,157,37,149),(30,123,158,38,150),(31,124,159,39,151),(32,125,160,40,152),(57,78,111,70,103),(58,79,112,71,104),(59,80,105,72,97),(60,73,106,65,98),(61,74,107,66,99),(62,75,108,67,100),(63,76,109,68,101),(64,77,110,69,102)], [(2,28),(4,30),(6,32),(8,26),(10,67),(12,69),(14,71),(16,65),(18,75),(20,77),(22,79),(24,73),(34,53),(36,55),(38,49),(40,51),(41,125),(43,127),(45,121),(47,123),(58,142),(60,144),(62,138),(64,140),(82,156),(84,158),(86,160),(88,154),(90,150),(92,152),(94,146),(96,148),(98,120),(100,114),(102,116),(104,118),(106,136),(108,130),(110,132),(112,134)], [(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,25),(8,26),(9,66),(10,67),(11,68),(12,69),(13,70),(14,71),(15,72),(16,65),(17,74),(18,75),(19,76),(20,77),(21,78),(22,79),(23,80),(24,73),(33,52),(34,53),(35,54),(36,55),(37,56),(38,49),(39,50),(40,51),(41,125),(42,126),(43,127),(44,128),(45,121),(46,122),(47,123),(48,124),(57,141),(58,142),(59,143),(60,144),(61,137),(62,138),(63,139),(64,140),(81,155),(82,156),(83,157),(84,158),(85,159),(86,160),(87,153),(88,154),(89,149),(90,150),(91,151),(92,152),(93,145),(94,146),(95,147),(96,148),(97,119),(98,120),(99,113),(100,114),(101,115),(102,116),(103,117),(104,118),(105,135),(106,136),(107,129),(108,130),(109,131),(110,132),(111,133),(112,134)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)], [(1,97,5,101),(2,104,6,100),(3,103,7,99),(4,102,8,98),(9,149,13,145),(10,148,14,152),(11,147,15,151),(12,146,16,150),(17,157,21,153),(18,156,22,160),(19,155,23,159),(20,154,24,158),(25,113,29,117),(26,120,30,116),(27,119,31,115),(28,118,32,114),(33,129,37,133),(34,136,38,132),(35,135,39,131),(36,134,40,130),(41,62,45,58),(42,61,46,57),(43,60,47,64),(44,59,48,63),(49,110,53,106),(50,109,54,105),(51,108,55,112),(52,107,56,111),(65,90,69,94),(66,89,70,93),(67,96,71,92),(68,95,72,91),(73,84,77,88),(74,83,78,87),(75,82,79,86),(76,81,80,85),(121,142,125,138),(122,141,126,137),(123,140,127,144),(124,139,128,143)]])

95 conjugacy classes

class 1 2A2B2C2D2E4A4B4C···4G4H4I5A5B5C5D8A8B8C8D10A···10L10M···10T20A···20H20I···20AB20AC···20AJ40A···40P
order122222444···4445555888810···1010···1020···2020···2020···2040···40
size111122224···488111144441···12···22···24···48···84···4

95 irreducible representations

dim1111111111112222222244
type+++++++++--
imageC1C2C2C2C2C2C5C10C10C10C10C10D4D4D4Q16C5×D4C5×D4C5×D4C5×Q16C8.C22C5×C8.C22
kernelC5×C22⋊Q16C5×C22⋊C8C5×Q8⋊C4C5×C22⋊Q8C10×Q16Q8×C2×C10C22⋊Q16C22⋊C8Q8⋊C4C22⋊Q8C2×Q16C22×Q8C2×C20C5×Q8C22×C10C2×C10C2×C4Q8C23C22C10C2
# reps112121448484141441641614

Matrix representation of C5×C22⋊Q16 in GL4(𝔽41) generated by

18000
01800
00180
00018
,
13300
04000
0010
0001
,
40000
04000
0010
0001
,
331200
39800
00024
002924
,
40800
0100
00713
003434
G:=sub<GL(4,GF(41))| [18,0,0,0,0,18,0,0,0,0,18,0,0,0,0,18],[1,0,0,0,33,40,0,0,0,0,1,0,0,0,0,1],[40,0,0,0,0,40,0,0,0,0,1,0,0,0,0,1],[33,39,0,0,12,8,0,0,0,0,0,29,0,0,24,24],[40,0,0,0,8,1,0,0,0,0,7,34,0,0,13,34] >;

C5×C22⋊Q16 in GAP, Magma, Sage, TeX

C_5\times C_2^2\rtimes Q_{16}
% in TeX

G:=Group("C5xC2^2:Q16");
// GroupNames label

G:=SmallGroup(320,952);
// by ID

G=gap.SmallGroup(320,952);
# by ID

G:=PCGroup([7,-2,-2,-2,-5,-2,-2,-2,1120,589,1128,1766,7004,3511,172]);
// Polycyclic

G:=Group<a,b,c,d,e|a^5=b^2=c^2=d^8=1,e^2=d^4,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,d*b*d^-1=b*c=c*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽